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ABSTRACT

This thesis is an exploration of the virtual memory subsystem in the modern Linux kernel. It
applies machine learning to find areas where better page-out decisions can be made. Two areas
of possible improvement are identified and analyzed. The first area explored arises because
pages in a computation appear repeatedly in a sequence. This is an example of temporal locality.
In this instance, we can predict pages that will not be recalled again from the backing store with
a precision and recall of 0.82 and 0.81, respectively, with a baseline of 0.30. The second is trying
to predict when the system has made bad page-out decisions, those which lived in the backing
store for less than one second before being recalled into RAM. In this case, we achieved a
precision of 0.82 and a recall of 0.81 with a baseline of 0.12.
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CHAPTER 1:

Introduction

Computer systems have a hierarchy of memory that is traditionally broken up into three primary
tiers. The first tier is the local cache available to a CPU. The second tier is the system’s RAM.
The third tier is the backing store, which today is generally either a hard drive or a solid state
drive. In early computers, programs and data had to fit inside of the available RAM. To allow
for larger than RAM problems, virtual memory was developed, where processes are given an
address space larger than the physically available RAM and it is left to the system to decide
which physical pages are kept in RAM and which are in the backing store.

Moving data between the first and second memory tiers is handled by the cache replacement al-
gorithm implemented on the CPU. When workloads expand beyond the size of available RAM,
decisions must be made about what to move down to the third tier since the difference in access
times between RAM and the backing store is several orders of magnitude. These decisions are
made by the page replacement algorithm (PRA) of the operating system. The difference be-
tween a good PRA and a bad one is the difference between a usable system under heavy load
that eventually completes its task and a system lost to endless thrashing.

Machine learning was originally conceived with the notion of giving computers human-like in-
telligence and reasoning abilities. Today the field, while not achieving human-like abilities, is
a well developed, nearly to the point of commoditization, array of classification, identification,
and regression algorithms. Though there will always be room for new algorithmic develop-
ments, most research in the field, more commonly referred to as data mining now, is about data
transformation for input into the preexisting models and assessment of results in new applica-
tions.

1.1 Thesis Structure
The research presented in this thesis seeks to apply modern machine learn techniques to data
gathered from the virtual memory subsystem of the Linux Kernel, searching for inefficiencies
and make recommendations for optimization.

In Chapter 2, we will present a brief history of virtual memory, explain the principle of locality
and demonstrate its applicability to modern systems, explain working set theory, explore many
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common paging algorithms along with some of their advantages and pitfalls, explore the ma-
chine learning algorithms used in this thesis, and present the machine learning software package
Orange.

In Chapter 3, we will present the hypothesis for this research, explain the experimental setup
for data gathering along with some limitations of our approach, and the call-all-X method for
calculating baseline, which will be used extensively in Chapter 4.

In Chapter 4, we will present the findings from various methods we applied to split and trans-
form the data. In most cases were not able to do well, but in two important cases we did very
well. In the first case, when the prior faulting page was the same as the prior-prior faulting page
(see Figure 3.4 for a visualization) we show success in classifying those pages that would not be
recalled from the backing store. In the second case, we will show success in classifying those
pages that lived in the backing store for less than one second, making them very bad page out
decisions.

In Chapter 5, we will explain the major contributions from this thesis, namely, a method of
modifying the Linux kernel for data collection about page-out events and how the method can
be used to build a data set useful for input into machine learning algorithms. From the data set,
we will discover two cases in which improvements to Linux’s page replacement algorithm can
be made as discussed in the previous paragraph. Further analysis of the two cases in which we
saw success will be performed and possible future work will be discussed.
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CHAPTER 2:

A Brief History of Paging and Machine Learning

The problem of developing efficient paging algorithms first began to be seriously studied in
the 1960’s: László Bélády, working for IBM, published a comprehensive study of paging al-
gorithms, in which he laid out the fundamentals of the field. “To minimize the number of
replacements, we attempt to first replace those blocks that have the lowest probability of being
used again. Conversely, we try to retain those blocks that have a good likelihood of being used
again in the near future.” [1] He also set the stage for the problems of theoretically minimal
algorithms to follow, “A good algorithm is one that strikes a balance between the simplicity of
randomness and the complexity inherent in cumulative information. In some cases, too much
reliance on cumulative information actually resulted in lower efficiency.” [1]

2.1 Virtual Memory
Except for rare cases in history, such as the transition from 32bit to 64bit architectures when
most systems came with 3GB of RAM, the physical amount of RAM present in a system is
smaller than the limit of the address space of an operating system. This problem is exacerbated
when running in a multiprogramming environment. Virtual memory is a solution to this problem
and is built into nearly every operating system today. Virtual memory assigns the entire address
space to each process, so, to the application it appears as though it is the only thing running.
The memory assigned to the process has to be translated from physical addresses to the virtual
addresses used inside the program. Since each program is able to address the entirety of the
address space, it is quite common for the set of running applications to allocate more memory
than is physically present in the system. When this occurs, the system must decide what to
keep in physical RAM and what to send down to the backing store to make room for the newly
requested memory. This process is called paging. The decision of what to keep and what to
evict from RAM is the subject of this research.

2.1.1 Principle of Locality
Bélády is responsible for what is widely considered to be a fundamental theory of paging, the
Principle of Locality. Bélády describes four kind of locality: temporal, spatial, branch, and
equidistant locality. Temporal locality is the proposition that if a memory location was accessed
recently, it is likely to be used again in the near future. Spatial locality is the proposition that
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if a memory location was used recently that memory locations near it are likely to be used
in the near future. Branch locality has to do with the nature of if�then statements common
to computer programs. Though the else block of a particular if�then segment may not be
“close” to the if segment, it can still be likely to be accessed in the near future. Equidistant
locality is a special case combination of spatial and temporal locality. If a segment of code
exhibits both, it can easily be predicted which memory address will be accessed next.

The principle of locality was first proposed by Bélády in 1966 and articulated by collaborative
work between Bélády and Denning in 1968. As such, it is occasionally questioned as to whether
the principle of locality still applies to modern computer programs. As recently as 2011, spatial
and temporal locality were both questioned and shown conclusively to still hold [4]. Instead of
copying their graphs for inclusion here, we duplicated their results for demonstrative purposes,
which can be seen in the memory access trace of a session of xterm in Figure 2.1.

2.1.2 Working Set
From the Principle of Locality, Peter Denning developed the notion of a program’s working
set [2]. The working set of an application is the set of all pages required by a program to
operate correctly in a given time slice. This is a very powerful theory, as it allows operating
system and, more specifically, PRA designers to make the correct decisions about what pages
to evict during a page fault. If a page is not part of a program’s working set, then it is the perfect
candidate for eviction, no matter how frequently or recently it’s been accessed [2]. From the
data gathered while duplicating the results for verification of working set, Figure 2.1 shows the
working set of xterm for any given time slice to be only those memory addresses shown in the
graph. As can be seen, the working set grows and shrinks over time, but has clear blocks with
no changes and significant periods of time where previously accessed memory locations are not
needed for the program’s current operation.

2.1.3 Paging Algorithms
There are many algorithms for deciding which page to discard from main memory when the
system is experiencing memory pressure. The optimum algorithm is unfortunately impossible
to implement in the general case, as it requires knowledge of the future. The optimum page
replacement algorithm pages out the page whose next use is furthest in the future [1]. The
best an implementable page replacement algorithm can hope to do is closely approximate the
optimum algorithm.
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Figure 2.1: Visualization of the memory accesses pattern of a session of xterm clearly demon-
strating spatial and temporal locality. Note the clusters in the graph for a given time slice, that
is xterm’s working set at that time.

The simplest page replacement algorithm is random selection. It assumes that every page is
equally likely to be used again and selects a page at random to be moved to the backing store.
This assumption is erroneous and generally results in useful pages being paged out too early,
only to be paged back in shortly there after. [1]

The first in/first out (FIFO) page replacement algorithm assumes that the page which has been
in RAM the longest is the least likely to be used again and thus sent down to the backing store.
Pages are kept in a queue. When a page is allocated, it is placed at the head of the queue.
When pages need to be paged out, the pages at the tail of the queue are selected. This algorithm
has been shown to have significant shortcomings. When using a FIFO PRA, it is possible to
encounter a situation in which decreasing the size of the available RAM can cause a decrease
in running time, i.e., fewer page faults [3]. Imagine a loop which indexes an array one page
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longer than the length of the queue. After a first pass through the loop, the next page to be
accessed will always be that page which was just paged out. FIFO is therefore, a sub-optimal
page replacement algorithm.

Least recently used (LRU) is incredibly simple in concept, but has proven quite difficult to im-
plement efficiently, the idea being that the page which was accessed the longest time ago is the
best candidate for eviction [9]. The trouble comes with having to perform some combination of
store, search, and sort on the list of evictable pages. Searching and sorting are computationally
expensive operations and thus take too long to execute in a page fault handler. Moving the
list management code out of the page fault handler solves the time requirement for the inter-
rupt handler, but the overhead of managing a priority queue has been shown to have significant
performance implications. The operations are sufficiently expensive that operating a true LRU
resulted in degraded system performance when compared to simpler algorithms, unless run-
ning on a system with the required access time tracking hardware built in, as is done on some
mainframes.

Second chance is not itself a page replacement algorithm, but a modification to an algorithm. In
general, second chance can be applied to any PRA, but is most commonly used with FIFO and
LRU. When a page that is a candidate for eviction is the target of the PRA to get evicted, the
page gets passed over the first time instead of being paged out. If the PRA makes it through the
entire list of evictable pages without evicting any or enough pages, then on the second pass the
pages that were previously passed over will be moved down to the backing store.

Least recently used with exemptions (LRUe) is a modification to LRU where local context
matching is used to build a short list of pages which are exempted from the normal paging pro-
cess. Local context matching is historical tracking of page-use sequences. If pages B through D
were used shortly after a page A recently in the program history, then pages B through D should
not be a candidate for eviction during a page fault if the page A was used recently. In certain
use cases, LRUe frequently outperforms standard LRU for the right load. [10]

Least recently used two queue (LRU 2Q) breaks the LRU list into two queues one holding
frequently accessed pages the other containing infrequently accessed pages. LRU 2Q has a
constant time overhead, out performs LRU, and requires no tuning. [11]

Adaptive replacement cache (ARC) is a self-tuning, low overhead replacement cache. [5] It was
developed and patented by IBM. ARC outperforms LRU and the algorithm is used in several
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production IBM storage systems. Due to the algorithm being patented, it is highly unlikely that
it will be used in open source software such as the Linux kernel prior to the patent expiring.

Clock is similar to FIFO and outperforms second chance except its list is circular, i.e., no
push/pop operations are required. When pages are first added to the list, their use bit is set
to one. Clock scans the list of evictable pages starting where it last left off, searching for an
eviction candidate, i.e., a page whose use bit is zero. If the page being inspected’s use bit is a
one, it sets it to zero. When it finds a page who’s use bit is zero, it checks the dirty bit. If the
dirty bit is one, it schedules that page to be cleaned otherwise, it evicts that page. [7]

WSClock is a slight modification of clock. During the sweep, it checks for cleared use bits just
as clock does. When it encounters a page who’s use bit is cleared, it checks the time of last
use field and if it’s greater than the length of a time slice. If it is greater then the page is not
part of the program’s working set. It’s dirty bit is then checked and handled the same way as in
clock. [8]

Clock with adaptive replacement (CAR) is another self-tuning page replacement algorithm de-
veloped and patented by IBM. It maintains two clocks based on recency and frequency of use,
backed by LRU lists. CAR out performs ARC [6], but again due to patent concerns in ineligible
for use in open source projects such as the Linux kernel.

The virtual memory subsystem of the Linux kernel makes use of a simplified LRU 2Q algorithm
for its page frame reclamation policy [12]. It’s simplified in that instead of maintaining true LRU
lists or FIFO lists, the two lists operate in a clock-like fashion. As such, the actual placement of
a page inside a list is meaningless.

2.2 Machine Learning Algorithms
There are many machine learning algorithms available today. For this research, we chose to
focus on supervised learning techniques, in particular, support vector machines, random forests,
naïve bayes, k-nearest neighbors, and CN2.

The support vector machine (SVM) algorithm is a supervised machine learning technique useful
for both classification and regression. The classifications made by an SVM are non-probabilistic
binary and linear. The feature space may be transformed by polynomial, radial basis, sigmoid,
or many other kernels. Data must be collected from some source, put into a feature vector, and
labeled as being of a class or not of a class. The labeled data is then fed into the SVM, where it
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finds a hyperplane that divides the feature space [13].

Random forests are a combination of tree predictors such that each tree depends on the values
of a random vector sampled independently and with the same distribution for all trees in the
forest. [14] It can more easily be thought of as a sequence of decision trees. Because of the law
of large numbers, random forests tend to be less susceptible to noise and thus are less likely to
overfit [14].

Naïve bayes, based on Bayes’ theorem with strong independence assumptions, is a probabilistic
classification technique. Despite the fact that the independence assumptions are generally inac-
curate in the real world, the classifier is highly effective and far less computationally expensive,
especially for extremely high dimensional data sets. [15]

K-nearest neighbors is a non-parametric classification technique based on clustering of data
points inside the feature space. It is one of the simplest machine learning techniques. A partic-
ular data point is classified by a majority vote of the k, typically a small number dependent on
the amount of noise in the training data, nearest other data points. [16]

The CN2 algorithm provides efficient induction of simple, comprehensible production rules in
domains where problems of poor description language and/or noise may be present. [17]

2.3 Chapter Summary
In this chapter we presented a brief history of virtual memory, explained the principle of locality
and demonstrated its applicability to modern system, explained working set theory, explored
many common paging algorithms along with some of their advantages and pitfalls, and explored
the machine learning algorithms used in this thesis. In the next chapter we will explain how
we gathered the data and transformed it for input into the machine learning software package
Orange and how we calculated baseline.
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CHAPTER 3:

Data Collection

Our hypothesis is that a machine learning based virtual memory (MLVM) system’s page re-
placement algorithm will produce fewer page faults than the LRU2Q found in the current Linux
kernel. In this chapter, we present the infrastructure needed to test this hypothesis.

3.1 Testing Environment
Tests were conducted on a virtual machine with artificially induced heavy system load.

3.1.1 Virtual Machine
All tests were conducted on a kernel based virtual machine (KVM) running a modified version
of Aptosid 2013-01, a Debian derivative based on version 3.8 of the Linux kernel, running on a
custom built desktop.

Motherboard: Asus P7P55D
Processor: Intel Core i7-860
RAM: G.Skill 12800
SSD: Pair of Samsung 840’s running in RAID1

3.1.2 Inducing Heavy System Load
Heavy system load wad induced with the Phoronix Test Suite’s Complex System Test. Memory
pressure was induced with a bash script, induce_memory_pressure (see Appendix B.3), which
alternatively opens a web browser with a random selection of websites in multiple tabs or opens
a randomly selected office application. The browser or office application was closed prior to
deciding which to open next. To ensure a significant number of page faults, the VM was limited
to 512MB of RAM. See Figure 3.1 for a screenshot of the VM running.

3.2 Instrumenting the Kernel
To collect the data, modification were made to the virtual memory subsystem of the stock Linux
kernel, which allowed us to better understand and analyze the inner workings of Linux’s current
page replacement algorithm.
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Figure 3.1: Screenshot of the data collection system running

3.2.1 Measurement Assumption
Ideally, performance would be measured by the number of machine instructions executed, not
the amount of time passed. Unfortunately, there is no way to gather the number of instructions
executed without running the system in something like Valgrind, which is unusably slow for
any sufficiently interesting tests. Instead of machine instructions executed, we measure time
passed. To support this substitution, we measured the number of machine instructions executed
per time and found a strong linear correlation between them, see Figure 3.2. Therefore, we are
comfortable using time as a replacement for machine instructions executed.

3.2.2 Limitations of Data Collection
Ideally, we would have collected the page use (read, write, modify) sequence along with infor-
mation about every page in the system at the time of a page fault. Unfortunately, the kernel
isn’t notified of page events other than faulting, so the first isn’t possible. And, due to the speed
requirements of an IRQ handler, looping through even just the entire Inactive List during a page
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(a) Valgrind output for ‘ls‘ (b) Valgrind output for ‘grep‘

Figure 3.2: Valgrind output showing a linear relationship between time and number of instruc-
tions executed

fault caused the system to crash. As such, we only gathered data about the page that caused the
fault.

3.2.3 Recording Page Fault Events
To record the data, fields were added to two structs, struct page (see Appendix A.1) and
struct task_struct (see Appendix A.2). page is the data type used to describe pages in
memory. task_struct is the data type used to describe processes. Fields for the time a page’s
active bit was last cleared, time of last fault, and the index of a given page’s previous fault’s prior
page that faulted were added to page. A field for time of last fault was added to task_struct.
All other data were stored in static members of the page fault handler. The complete list of fea-
tures collected can be found in Figure 3.3. The features we added are marked with "(MLVM)".

Features 14 and 16 may not be immediately obvious. See Figure 3.4 for a visualization of
them. The sequence of blocks in the image represents the sequence of faulting pages. X is
the current faulting page. Y2 is the page that faulted prior the current faulting page, feature 14,
herein referred to as ‘prior’. Y1 is the page that faulted prior to the current pages’ previous fault,
feature 16, herein referred to as ‘prior-prior’.

3.3 Data Transformation and Analysis
The data collection procedures from the last section produced nearly 2GB of raw data which
needed to be parsed and labeled before it could act as input for a machine learning algorithm.
This section describes that transformation and some statistics about the data.
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1. Time since last page fault (MLVM)
2. Page zone index
3. Page zone’s inactive ratio
4. Page zone’s spanned pages
5. Page zone’s present pages
6. Page zone’s managed pages
7. Previous faulting process’ index (MLVM)
8. Current faulting process’ index (MLVM)
9. Number of dirty pages belonging to the faulting process

10. Time since the faulting process last faulted (MLVM)
11. Faulting page’s index
12. Time since faulting page’s active bit was cleared (MLVM)
13. Time since faulting page last faulted (MLVM)
14. Index of the page that faulted prior to the faulting page’s previous fault (MLVM)
15. Faulting page’s reference counter
16. Index of the page that faulted prior to this page (MLVM)
17. The address that caused the fault
18. All page flags

Figure 3.3: Feature Vector List. Features we added to the kernel are annotated with “(MLVM)”.

Figure 3.4: Visualization of the memory accesses pattern explaining features 14 and 16 from
Figure 3.3.

3.3.1 Data Transformation and Labeling
Only a minor transformation had to be applied to the data before running it through Orange. All
of the time values recorded in the raw data were given in absolute time, and had to be translated
to relative time for the events.

To label the data, for each page fault event the remainder of the test’s data was scanned to search
for the next time that page faulted. The median, along with all other deciles for the next time a
page faulted, was calculated (see Table 3.1). All faults below the 50 percent mark, that is, pages
recalled from the backing store in less than approximately 127 seconds, were labeled as a bad
decisions, while faults above the 50 percent mark, that is, pages that lived in the backing store
for more than approximately 127 seconds, were labeled as good decisions.
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Decile Time until next page swap (nanoseconds)
10% 6624554
20% 214423654
30% 10025255994
40% 60660815059
50% 127280054223
60% 247219468813
70% 475254029795
80% 739048735114
90% 1752473234894

P(∞) : 0.507373

Table 3.1: Deciles of time until next swap in nanoseconds and probability of a page not being
recalled from the backing store, denoted here as P(∞).

Figure 3.5: Screenshot of one of the Orange experimental environments we set up.

3.3.2 Machine Learning Software
In this research, we used the machine learning package Orange. It has a simple and intuitive
graphical user interface, allowing the modern data mining scientist to accomplish most, if not
all, of their work without having to write a single line of code, once the data is sufficiently
transformed for input. See Figure 3.5 for a screenshot of one of the experimental environments
we set up.

3.3.3 Calculating Baseline
A standard baseline would be the maximum-likelihood estimate (MLE); however, in some
cases, this is artificially high due to the disproportionate presence of the class we’re not looking
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for. We instead are using essentially the probability of selecting the item from the target class:
call-all-X. For call-all-X, the precision is the proportion of the test set in the target class and
recall is 1. In the cases where MLE was the probability of not-recalled, 50.7 percent, MLE was
used.

3.4 Chapter Summary
In this chapter we presented the hypothesis for this research, explained the experimental setup
for data gathering along with some limitations of our approach, presented the machine learning
software package Orange, and the call-all-X method for calculating baseline, which will be used
extensively in the following chapter. In the next chapter, we will present the machine learning
experiments we conducted on various transformations of the data.
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CHAPTER 4:

Experimental Results

In this chapter, we present the sequence of experiments we performed on the data gathered in
Chapter 3. Since the probability of a page never being recalled from the backing store was 50.7
percent, the initial task was to try to classify the data as either being recalled from the backing
store at some point in the future, or not being recalled at all, we call this recalled or not-recalled,
respectively. The data was randomly sampled to decrease computation time.

4.1 Phase 1: To Infinity and Beyond
Initially, we tried SVM (RBF kernel), naïve bayes, random forest, k-nearest neighbors, and
CN2. The classification accuracy ranged from 0.55-0.60, with most classifiers only barely
beating the MLE of 0.507. With such low scores, we looked to reduce the dimensionality, as
it was suspected many of the features were adding noise. Using information gain, the page
zone information, faulting address, and page flags were removed from the feature vector. Upon
further reflection it was realized that the classifiers were trying to treat the process indexes as
continuous variables when they are in fact metric-less identifiers. They were since transformed
into a binary feature of whether or not the previously faulting process was the same as the
currently faulting process. The page indices as absolute values are similarly meaningless by
themselves, but due to spatial locality, pages with indexes close to each other could provide
further insight. Therefore the index of the current faulting page was dropped and the prior and
prior-prior indices were made relative to the current index. Shown in Figure 4.1 is the updated
feature vector.

4.2 Phase 2: The Thin Red Line
With the reduced feature count, we retested the classifiers discussed in Section 4.1. The classifi-
cation accuracy only improved slightly, with random forest remaining the best at 0.66. A linear
projection (based on FreeViz [18]) of the reduced feature space showed evidence of a distinctly
classifiable grouping, note the red line in Figure 4.2.

After performing further dimensional reduction based on the variance of the features for the
data points on this distinct red line, the clumping turned out to be from the relation between the
prior faulting page index and the prior-prior faulting page index. When plotted in a scatter plot,
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1. Time since last page fault (MLVM)
2. Previous faulting process is the current faulting process (MLVM)
3. Number of dirty pages belonging to the faulting process
4. Time since the faulting process last faulted (MLVM)
5. Time since faulting page’s active bit was cleared (MLVM)
6. Time since faulting page last faulted (MLVM)
7. Faulting page’s reference counter
8. Distance of the index of the page that faulted prior to the faulting page’s previous fault

from the current faulting page (MLVM)
9. Distance of the index of the page that faulted prior to this page from this page (MLVM)

Figure 4.1: Updated Feature Vector List. Features we added to the kernel are annotated with
“(MLVM)”.

see Figure 4.3, it was obvious that the equation of the red line was y = x, i.e., when the prior
faulting page index was the prior-prior faulting page index. What we were seeing was the result
of regularly repeated code paths, which is consistent with the idea of temporal locality.

4.3 Phase 3: Just Another Case of History Repeating
We split the data according to whether the prior faulting page was also the prior-prior faulting
page to process the two groups separately. Taking the data group where they are the same first,
we reran the classifiers to look for not-recalled. Random forest again came out on top. With the
newly limited data set, it achieved an accuracy of 0.93 with an F-Score of 0.81. Precision and
recall were 0.82 and 0.81, respectively. Call-all-not-recalled’s F-Score and thus the baseline
was 0.30. SVM achieved an F-Score of 0.66. The precision and recall were 0.80 and 0.57,
respectively.

The predominately deciding feature turned out to be the process’ number of dirty pages with an
information gain of 0.307. The other major factors were the time since the page had last faulted
and the time since the page’s active bit had been cleared with information gains of 0.237 and
0.219, respectively. See Table 4.1 for the complete list of the features’ information gain.

As is demonstrated in Figure 4.4, the data when prior is the same as prior-prior is clearly sepa-
rable. In the next set of experiments we turn to predicting good pages to throw out when prior
is different from prior-prior.
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Figure 4.2: Linear projection (based on FreeViz [18]) of updated feature vector. Note the
distinct red line in the dots in the lower left corner of the projection. All of the dots on this
line are those pages who’s prior faulting page was the same as its prior-prior faulting page, 10
percent of which will never be swapped back in.

4.4 Phase 4: The Only Constant is Change

Classifying the remaining data, i.e., when the prior faulting page index was not equal to the
prior-prior faulting page index proved to be far more of a challenge than classifying when
prior is the same as prior-prior. MLE’s accuracy was 0.52, so the data was more evenly split.
The baseline F-Score was 0.69. This time, SVM beat out random forest, but neither classifier
managed to beat baseline. SVM achieved an F-Score of .66 while Random Forest only managed
0.63.

As is clearly demonstrated in Figure 4.5 and backed up by the lack of information gain in
Table 4.2, there are no discernible groupings in the data, which explains the poor F-Scores.
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Figure 4.3: Scatter plot of prior faulting page index against prior-prior faulting page index
showing the distinct red line along y = x indicating pages where the prior faulting page was the
same as the prior-prior faulting page.

4.5 Phase 5: The Good, the Bad, and the Ugly
Supposing for a moment that we could successfully classify a page as not-recalled or recalled,
we resplit the data and worked only with pages previously labeled as recalled, i.e., only those
pages which were recalled from the backing store. The goal was to see if we could distinguish
between pages falling above or bellow the 50 percent threshold, calling pages which fell bellow
the threshold bad page out decisions and those above the threshold as being good page out
decisions. From our previous experiments, we added a feature to the feature vector: a binary
feature noting whether or not prior is the same as prior-prior.

Since the data were split exactly in half, MLE was 0.50 and thus used as baseline, achieving an
F-Score of 0.691. Both SVM and random forest were able to beat baseline, achieving F-scores
of 0.754 and 0.744, respectively.
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Attribute Information Gain
Faulting process dirty pages 0.307
Time since page last faulted 0.237
Time since page’s active bit cleared 0.219
Prior prior faulting page 0.012
Prior faulting page 0.012
Page reference counter 0.004
Time since process fault 0.001
Time since last fault 0.001
Previous is current faulting process 0.000

Table 4.1: Information Gain for the updated feature vector for the data when prior is the same
as prior-prior showing strong discernability among the top features.

Attribute Information Gain
Time since page last faulted 0.008
Faulting process dirty pages 0.006
Time since process fault 0.001
Previous is current faulting process 0.001
Time since last fault 0.001
Page reference counter 0.001
Prior prior faulting page 0.001
Prior faulting page 0.001
Time since page’s active bit cleared 0.000

Table 4.2: Information gain for the updated feature vector of prior is different from prior-prior
data showing far less discernability between the features.

4.6 Phase 6: Back to Reality
Since we were not able to determine not-recalled vs recalled well, we then decided to test
classifying above or bellow the 50 percent threshold using all of the data. For this data set,
MLE for the class we weren’t looking for was 0.75, so call-all-recalled was used as baseline,
which achieved an F-Score of 0.385. SVM was only barely able to beat baseline with an F-Score
of 0.395, while Random Forest was able to get 0.477.

Looking at the information gain, see Table 4.3 for the complete table, it appeared as though
some of the features were still adding noise. We took the top four features and saw a slight
improvement in SVM’s F-Score with 0.402, while random forest fell to 0.471.
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Figure 4.4: Linear projection (based on FreeViz [18]) of when prior is the same as prior-prior
data showing how highly separable the data is.

4.7 Phase 7: Taking the Log

While looking at the survey plot for 50 percent data split, we noticed that the time related data
was showing a step-exponential shape (see Figure 4.6). Since we used SVM with normalization,
it made sense to take the log of all time values to increase the separation of the lower values. The
data split for this set was the same as the last set with an MLE of 0.75 of the non-target class,
so call-all-recalled was again used for baseline with the same F-Score of 0.385. Both random
forest and SVM saw slight improvements, achieving F-Scores of 0.487 and 0.403, respectively.

Noting similar patterns in the linear projection and information gain as we saw in Phase 6,
we repeated the feature-space reduction. In contrast to Phase 6 where feature-space reduction
caused a drop for random forest, both random forest and SVM saw marginal increases to 0.505
and 0.406 respectively.
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Figure 4.5: Linear projection of prior is different from prior-prior data showing how not sepa-
rable the data is.

4.8 Phase 8: Low Hanging Fruit
Taking one last look at the data, we decided to see if we could classify the worst of the pages,
those that were below the 20 percent mark, ie pages that lived in the backing store for less than
a second. With an MLE of only 0.10, call-all-recalled was again used for baseline, with an
F-Score of 0.124. Both Random Forest and SVM performed well, achieving F-scores of 0.786
and 0.644, respectively. For Random Forest, the precision and recall were 0.818 and 0.758,
respectively. For SVM, precision and recall were 0.693 and 0.600, respectively. Hoping for
another marginal increase, we applied the same feature-space reduction from Phase 6 and 7
only to be disappointed as both fell to 0.770 and 0.640, respectively.

4.9 Chapter Summary
In this chapter we presented the findings from the various methods we applied to split and
transform the data. In most cases we were not able to do appreciably better than MLE, but in
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Attribute Information Gain
prior is the same as prior-prior 0.084
Faulting process dirty pages 0.059
Time since page last faulted 0.039
Time since page’s active bit cleared 0.009
Page reference counter 0.003
Time since last fault 0.002
Time since process fault 0.001
Prior faulting page 0.001
Prior-prior faulting page 0.001
Previous is current faulting process 0.000

Table 4.3: Information gain for the feature vector of the Phase 6 data showing moderate sepa-
rability.

two cases we did very well. In the first case, when the prior faulting page was the same as the
prior-prior faulting page, we succeeded in classifying those pages that would not be recalled
from the backing store. In the second case, we succeeded in classifying those pages that fell
below the 20 percent mark, i.e., the pages that lived in the backing store for less than one second,
making them very bad page out decisions.
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Figure 4.6: Survey plot of features from the Phase 6 data split sorted by time since page last
faulted showing a step-exponential shape. All columns are sorted according to the order result-
ing from sorting time since page last faulted. The lack of a discernible patterns in the other three
columns demonstrates the lack of a simple correlation among the features.
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CHAPTER 5:

Conclusions and Recommendations

In this thesis, we presented a method of modifying the Linux kernel for data collection about
page-out events. This method was used to build a data set useful for input into machine learning
algorithms. From the data set, we discovered two cases in which improvements to Linux’s page
replacement algorithm can be made.

As we discovered in Section 3.3, over half of the pages swapped out were never needed again.
As such, Linux’s 2nd Chance 2Q Clock PRA (see Section 2.1.3) is an effective page replacement
algorithm. As shown in Figure 5.1, T F(p) the time until the next fault page p has an exponential
shape, when sorted by time. Linux’s page fault algorithm is not ideal; too many pages have a
short time until next fault. Ideally, that graph would be more logarithmic than an exponential.
However, the graph shows only half of the data; the other half never faulting after the initial
load, so T F(p) is infinite.

5.1 Contributions
Though many of the tests described in Chapter 4 failed to, or only barely beat, the baseline
for the given test, performance was notable in two key cases. First, demonstrating temporal
locality, pages where the prior faulting pages was the same as the prior-prior faulting page
were easily classified as not-recalled vs. recalled. Second, the pages from the worst page-out
decisions, those falling below the 20 percent decile who lived in the backing store for less
than a second, were successfully classified against those who lived in the backing store longer.
Exploiting these two cases in the page replacement algorithm might provide significant system
performance gains by decreasing the number of bad page out decisions.

5.1.1 The Thin Red Line
In the workload we used for data collection, pages were found on the red line seen in Figure 4.2
indicating that the prior faulting page was the same as the prior-prior faulting page 10.0 percent
of the time. Since the line itself is a product of the way we program with loops and regularly
repeated code paths, i.e., temporal locality, some pages should fall on it no matter the workload.
The only thing that will vary is the percentage of pages found on the line.
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Figure 5.1: T F(p): Time until next fault of pages, sorted by time

For our workload, pages found on the line were recalled from the backing store 90 percent of the
time. We were reasonably good at selecting the remaining 10 percent of the pages. For Random
Forest, the precision and recall were 0.819 and 0.805, respectively. For SVM, the precision and
recall were 0.800 and 0.566, respectively. These pages are good candidates for eviction.

There is still an issue however for the candidate pages chosen above. If we happen to be wrong,
and the page chosen has a non-infinite time until next fault it is likely to have a very short time
until next fault (see Figure 5.2). The following section describes a method for dealing with this
problem.

5.1.2 Below the 20 Percent Decile
Pages that fall below the 20 percent decile are the worst candidates for paging out. They live in
the backing store for less than one second before being recalled into RAM. Luckily, we were
able to build a classifier to determine if the candidate page is in this set. For random forest, the
precision and recall were .818 and .758, respectively. For SVM, precision and recall were 0.693
and 0.600, respectively. Compare this to a baseline of 0.124.

5.2 Future Work
This thesis has laid the ground work for a more mature data collection environment. The first
thing that should be done is use existing infrastructure to conduct more tests under different
workloads and look for artifacts similar to the thin red line. Additionally, it may be worth-
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Figure 5.2: Histogram showing the distribution of pages on the red line among the deciles.
Pages in the first two bars are swapped back in within 0.25 seconds. Pages in the first four bars
are swapped back in in under a minute.

while to investigate the graphs in Figure 5.3 and Figure 5.4, which are plotted from the data
from Phase 7. Other relationship may be discovered here that could lead to further insight into
possible improvements for Linux’s page replacement algorithm.

5.2.1 Machine Learning Swap Algorithm Implementation
The ultimate goal is to implement and test a page replacement algorithm based on this and future
research. The normal page replacement algorithm would identify a candidate for eviction. It
would then pass that page to our system built to be classified as a good or bad candidate for
eviction. See Figure 5.5 for the pseudo-code algorithm. After implementation, performance
tests would need to be conducted to tune the counter threshold (set to three initially) to see
if the new algorithm could outperform the current one. The above tests must be designed to
balance actual system performance against the cost of producing the ideal page replacement
algorithm.
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Figure 5.3: Scatter plot of the time since a page’s active bit was cleared vs the time since its
containing process had last faulted.

5.2.2 The Other Side of the Thin Red Line
Supposing that implementing a machine learning algorithm in the kernel is slower than the
current implementation, despite making better page-out decisions, a simpler approach can be
found in the data in Figure 5.2. The vast majority of pages found on the thin red line fall
below the 40 percent mark and comprise the worst page-out decisions. Simply withholding all
pages with prior equal to prior-prior could provide a system speedup and would be far easier
to implement. All that would be required are the additions to track prior and prior-prior in the
page struct, which would get updated in the page fault handler, with a simple test for equality
during the page-out process.

5.3 Conclusion
In this thesis, we modified the Linux kernel for data mining the page-out decisions made by
Linux’s page replacement algorithm. We transformed that data for input into machine learning
algorithms and identified two cases where improvements could be made to Linux’s PRA. The
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Figure 5.4: Scatter plot of the time since the page had last faulted vs the time since its containing
process had last faulted.

1. Set counter to zero
2. Page replacement algorithm (PRA) selects candidate for eviction
3. PRA queries trained classifier to judge candidate page
4. If page is not-recalled proceed with eviction
5. Else skip page, increment counter
6. If counter < three goto 2.
7. Else evict page anyways, goto 1.

Figure 5.5: Algorithmic addition to Linux’s current page replacement algorithm

first case being when the prior faulting page was the same as the prior-prior faulting page. It
was noted that 90 percent of the pages with prior equal to prior-prior would be recalled, the
vast majority of which being the worst candidates for eviction and suggested an improvement
to Linux’s PRA based on keeping all pages with prior equal to prior-prior in RAM. The second
case being when the page lived in the backing store for less than one second before being
recalled into RAM and suggested keeping those pages in RAM in favour of pages with longer
expected stays in the backing store. While implementation testing is clearly needed to determine
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the impacts of these enhancements, this thesis has identified a couple avenues for improving the
performance of the billions of devices that run Linux.
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APPENDIX A:

Data Structure Modi�cations

A.1 /include/linux/mm_types.h
struct page {

...

/* MLVM additions */

struct timespec active_bit_cleared;

struct timespec last_fault_time;

unsigned long previous_faults_prior_page_faulted;

};

A.2 /include/linux/sched.h
struct task_struct {

...

/* MLVM additions */

struct timespec last_fault_time;

};
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APPENDIX B:

Bash Scripts

B.1 run_test.sh
#! /bin/bash

cd mlvm_log_module

make

cd ..

i=1

while true

do

echo "Test run: $i"

cd mlvm_log_module

insmod ./mlvm_log_module.ko

cd ..

su - [username] -c ./run_phoronix.sh &

su - [username] -c ./induce_memory_pressure.sh > /dev/null

rmmod mlvm_log_module

i=$(($i+1))

done

B.2 run_phoronix.sh
#! /bin/bash
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phoronix-test-suite interactive << ARGS

3

n

7

ARGS

B.3 induce_memory_pressure.sh
#! /bin/bash

websites=(

www.cnn.com

www.foxnews.com

www.imgur.com

www.reddit.com

www.thechive.com

www.knowyourmeme.com

www.mashable.com

www.wsj.com

)

# --norestore flag used to prevent attempting to recover the file that was

# not saved when the program was terminated by the kill command

office_apps=(

"localc --norestore"

"lodraw --norestore"

"loimpress --norestore"

"lomath --norestore"

"lowriter --norestore"

)

actions=(

internet

office
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)

function rando_sleep {

sleep $(( $1 + ($RANDOM % $2) ))

}

function internet {

#TODO clear browser cache

for i in { 1..$(( 2 + ($RANDOM % 10) )) }

do

chromium ${websites[ $(($RANDOM % ${#websites[@]})) ]} &> /dev/null &

rando_sleep 5 5

done

killall chromium

while $(ps -C chromium > /dev/null)

do

sleep 10

done

}

function office {

${office_apps[ $(($RANDOM % ${#office_apps[@]})) ]} &

rando_sleep 10 10

killall soffice.bin

while $(ps -C soffice.bin > /dev/null)

do

sleep 10

done

}

while $(ps -C phoronix-test-suite > /dev/null)

do

${actions[ $(($RANDOM % ${#actions[@]})) ]}

if $(ps -C x-www-browser > /dev/null)
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then

killall x-www-browser

fi

if $(ps -C iceweasel > /dev/null)

then

killall iceweasel

fi

rando_sleep 5 5

done
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